
UCRL-CONF-200276

Diffusion and multiple anisotropic
scattering for global illumination
in clouds

N. L. Max, G. Schussman, R. Miyazaki, K.
Iwasaki, T. Nishita

October 15, 2003

The 12-th International Conference in Central Europe on
Plzen, Czech Republic
February 2, 2004 through February 6, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Diffusion and Multiple Anisotropic Scattering for
Global Illumination in Clouds

Nelson Max

Lawrence Livermore National Lab.
Mail Stop L-560

7000 East Avenue
 USA 94550 Livermore CA

max2@llnl.gov

Greg Schussman
Stanford Linear Accelerator Ctr.

Mail Stop 26
2575 Sand Hill Road

USA 94025 Menlo Park CA

schussman@SLAC.stanford
.edu

Ryo Miyazaki, Kei Iwasaki,
and Tomoyuki Nishita

University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Japan 113-0033 Tokyo

{ryomiya, kei-i, nis}@nis-
lab.is.s.u-tokyo.ac.jp

ABSTRACT

The diffusion method is a good approximation inside the dense core of a cloud, but not at the more tenuous
boundary regions. Also, it breaks down in regions where the density of scattering droplets is zero. We have
enhanced it by using hardware cell projection volume rendering at cloud border voxels to account for the
straight line light transport across these empty regions. We have also used this hardware volume rendering at
key voxels in the low-density boundary regions to account for the multiple anisotropic scattering of the
environment.

Keywords
Diffusion approximation, multiple anisotropic scattering, global illumination, participating media, clouds.

1. INTRODUCTION
The appearance of a cloud is produced by multiple
scattering of the incident illumination. The phase
function for the result of two scattering events is the
convolution of their two phase functions, and the
convolution of any non-delta-function phase function
with itself enough times approaches a uniform
distribution, as shown in [Stam95]. In the interior of
a cloud, the water droplets are dense, and the mean
free path of a photon is short, so the large number of
scattering events in a voxel will cause it to radiate
scattered light diffusely. In the diffusion
approximation, explained briefly in section 2 below,
the equation for radiance transport is approximated
by an equation for diffuse light transport, which can
be more easily solved by multigrid relaxation. Kajiya
and von Herzen [Kaj84] first proposed it to the
computer graphics community, and Stam [Stam95]

gave the first practical implementation for radiance
transport in clouds. The diffusion calculations in
[Stam95] assume a rectangular solid of non-zero
cloud droplet density, which is unrealistic for actual
clouds. Furthermore, Mie scattering from small water
droplets is concentrated in the forward direction, and
this directional scattering is evident in the subtle
color and intensity effects at the edges of a cloud,
where the expected number of scattering events is
not large enough to produce anisotropy. The goal of
our work is photorealistic rendering of clouds using
the diffusion approximation on the dense core, with
modifications to account for regions of zero droplet
density, and multiple anisotropic scattering at the
edges.

Older work on global illumination in participating
media is well summarized in [Per97] and the
references cited there. The basic Monte Carlo
method of tracing random rays from the light source
or the viewpoint suffers from the problem that few
paths from the viewpoint reach the light source, and
vice-versa. By tracing photons from the light source,
accumulating scattering events into a voxel data
structure called a photon map, and then doing a final
gather from the viewpoint by ray tracing the photon
map, Wann Jensen and Christensen [Jen98] solve
this problem. However, in realistically large and
dense clouds, the photons will basically make a

random walk through the dense medium, and
progress a straight line distance O(n) in n
bounces, total path length n, or computation time n.
Thus illumination on one side of a dense cloud will
take a very long time to reach the other side.
Recently, Premoze, Ashikmin, and Shirley [Prem03]
have applied the path integral method from quantum
mechanics to make a more efficient approximation,
but it can be biased because it takes into account
mainly the forward scattering, and does not account
for all light paths.

Jensen et al. [Jens01] proposed an approximate
solution to the diffusion equations, using a dipole of
two point sources, one above and one below a planar
object surface, and a simple analytic solution for the
diffusion equation for point sources in a
homogeneous medium. Jensen and Buehler [Jens02]
applied this to objects represented by surface point
clouds, using an octree hierarchy to cluster the
effects of irradiance at points far from the position
being rendered. Mertens et al. [Mer03] used a similar
hierarchical method on polygonal surfaces, with a
semi-analytic integration for the effect of the
irradiance on a triangle. Lensch et al. [Len02] used
triangle-based piecewise linear basis functions for
global transport, and texel-based piecewise constant
basis functions for local transport. Dachsbacher and
Stamminger [Dach03] combine this local/global
transport separation with the hierarchical evaluation
into a texture-based approximation, which can be
evaluated in real time using programmable vertex
and fragment shaders. The dipole approximation
used in all these methods assumes that the surface is
planar, and that the medium is uniform and optically
thick. These methods give plausible realistic
renderings for more complex geometry, but cannot
deal with the non-diffuse scattering discussed above
at the tenuous edges of clouds, where the mean free
path of a photon is comparable to the geometry
feature size, and the diffusion approximation is
invalid.

2. DIFFUSION APPROXIMATION
The following is a brief summary of the derivation of
the diffusion approximation. For details, see [Ish78].
(Note that the derivation in [Stam95] is incorrect, and
Stam’s equations differ from Ishimaru’s by factors of
3 in several terms.)
The equation for light propagation in a participating
medium is

 (1) ω

ds

where X is 3D position, ω and ω’ are ray directions
on the unit sphere, I(X,ω) is radiance at X flowing in
direction ω, s is length along the ray in direction ω,
κ(X) is the extinction coefficient, a is the albedo, the
scattered fraction of the extinction, and p(ω,ω’) is the
phase function giving the probability density that
scattered light from ω’ scatters to ω. (Note that in
[Ish78], p(ω,ω’) also includes the albedo a.)
In a cloud, κ(X) = ρ(X) σt, where ρ(X) is the number
density of water droplet particles, and σt is the
extinction “cross section” per particle. Also let σs = a
σt be the scattering cross section per particle, and σa
= σt – σs be the absorption cross section per particle.
Assume that the phase function p(ω,ω’) depends only
on the angle θ between the unit vectors ω and ω’,
and let

 ∫ ′⋅′=
π

ωωωωω
4

1))(,(dpp

be the average cosine of the scattering angle θ. For
the Henyey-Greenstein scattering phase function

2
3

2

2

)cos21(4

1)(

gg

gp

+−

−
=

θπ

θ

which we use, p1 = g.
Let Iri(X, ω) be the reduced incident radiance, which
can be computed from the sun and sky radiance
Isky(ω) by the attenuation formula

 (2) .)(exp)(),(
0

−−= ∫

∞

dssXIXI tskyri ωρσωω

Let
 −=),(),(ωω XIXId),(ωXIri

be the “diffuse” radiance that has been scattered at
least once. Approximate Id(X, ω) with the first order
dependence on the unit direction vector ω :

 Id (X,ω) = I0(X) + I1(X) · ω .
Substituting
 I (X,ω) = Iri(X, ω) + I0(X) + I1(X) · ω (3)
into equation (1), and integrating ω over the unit
sphere, we get a scalar equation. Then multiplying by
the unit vector ω and integrating over the unit sphere,
we get a vector equation. We solve this vector
equation for I1(X) in terms of I0(X) and its
derivatives, and substitute the result into the scalar
equation, which also involves the divergence of
I1(X). By doing some vector algebra, vector calculus,

,),(),()(

),()(),(

4

ωωωκ

ωκω

π

′′′⋅

+−=

∫ dXIpaX

XIXXdI

and mathematical manipulations on these equations,
we end up with the single “diffusion” equation

⋅∇+−

=−

∇⋅∇

)(
)(4

1)(

)()()(
)(3

1

10

00

X
x

XQ

XIXXI
X

tr

a
tr

Q
σπρ

σρ
σρ

 (4)

where
)1(1apttr −= σσ

is the “transport cross section”,

 Q ωωωωσρω
π

′′′= ∫ dXIpXX ris),(),()(),(
4

 is the first scattered external illumination,

 ωω
π

π

dXQX),(
4
1)(

4
0 ∫=Q (5)

is the first scattered external illumination averaged
over the unit sphere, and

 Q1),(
4
1)

4

ω
π

π

XQX ∫=(ω dω (6)

 is its directionally weighted average, a vector.
The incident sun and sky illumination are assigned to
direction bins on the subdivided surface of a unit
cube, as shown in Figure 1b). The power in bin i is
Isky(ωi)∆ωi , where ∆ωi is the solid angle of bin i.
This power is propagated into the voxels of the cloud
volume to compute Iri(X,ωi) by tracing a dense
collection of rays in the direction ωi , starting from
the external faces of the box enclosing the cloud.
Each ray intersects the voxels in a collection of
segments Sj, along which the attenuation integral in
(2) can be accumulated. The lengths l(Sj) of these
segments weight the contributions of Iri(X,ωi) to the
integrals in (5) and (6) at the voxel X. So the
contribution to the integral (5) of a ray segment Sj is
ρ(X) σs Iri(X,ωi) ∆ωi l(Sj). The phase function
p(ω,ω’) depends only on the angle θ between ω and
ω’. Thus the contribution of light flowing in
direction ω’ = ωi to the integral (6) lies only along
direction ωi , since the other components cancel by
symmetry. It therefore equals ρ(X) σs Iri(X,ωi) ∆ωi

l(Sj) p1 ωi . After these contributions are summed for
all rays in direction bin i, the values of the sums for
(5) and (6) in each voxel are normalized by dividing
by the sum of the lengths l(Sj) of the segments it
contains. The scalar Q0(X) and the vector Q1(X) are
saved at each voxel X.
The sky and sun colors were computed taking into
account Rayleigh scattering from the molecules in
the atmosphere, using the methods of [Nis96],

[Dob97], and [Pre99], and Mie scattering from
aerosols, using the methods of [Slo02].

Boundary Conditions
For the boundary conditions at the surface of the
voxel regions containing non-zero droplet density,
we really want the inward diffuse radiance Id(X, ω) to
be exactly zero for all directions ω with ω · n > 0,
where n is the inward surface normal. But this is
impossible for a function of the form I0(X,ω)+
I1(X, ω)·ω unless the function is zero for all ω. So an
approximate condition of no total inward flow is
used:

 (ω · n) dω = 0, ∫
π

ω
2

),(XId

where the integral is over the inward hemisphere.
After some mathematical manipulations, this results
in the boundary condition:

0

)(2
1

)(
)(3

2)(

1

00

=⋅

+∇⋅−

Qn
X

XIn
X

XI

tr

tr

σπρ

σρ
 (7)

For more details on the derivation of this equation
and of equation (4), see [Ish78].

Finite Difference Solution
To solve the partial differential equation (4) we use
finite differences to estimate the derivatives. The
difference for the gradient of I0 is evaluated at the
face centers, and for the value of ρ in the first term of
equation (4), the average of the ρ(X) for the two cells
sharing the face is used, unless one of them has ρ =
0, in which case the value at the other cell is used.
Central differences are used to evaluate the gradient
for the last term of equation (4). All this results in a
set of linear equations relating each value I0(X) to the
values at its six adjacent neighbors. The boundary
condition (7) is enforced by assuming a temporary
value of I0(Xe) at an adjacent empty cell Xe where the
droplet density is zero, set to satisfy (7), and using it
to compute the differences for equation (4). This
affects the coefficients of the linear equations, which
end up not involving I0(Xe), so the temporary value
of I0(Xe) can be different for different full cells
adjacent to the same empty cell Xe.
The resulting set of linear equations can be solved
iteratively by the Gauss-Seidel or Jacobi method, by
setting each I0(X) to a weighted sum of its old value
and the old values of its six neighbors, plus a
constant term involving Q0 and Q1 that comes from
the constant right hand side of the linear equation.
This will take a long time for a large grid, since a
bright spot caused by sunlight hitting one side of the
cloud can only propagate across one adjacent cell per

iteration, so it will take many iterations for it to affect
the opposite side of the cloud. Therefore a multigrid
method is used. This is like mip mapping. The data
volume is considered as a multi-resolution octree
hierarchy, and coarser versions of the linear
equations are written for lower levels of the
hierarchy. Their solutions are used to correct the
solutions at finer levels of the hierarchy to allow for
faster propagation, and the solution method iterates
up and down the levels in the hierarchy until
convergence. For details, see [Bri00]. We used the
Hypre system API and multigrid solver from
Lawrence Livermore National Laboratory [Hypre03].

3. PROPAGATION IN CLEAR AIR
If Xe is an empty border voxel with ρ(Xe) = 0,
adjacent across face F to a full voxel X, with ρ(X) >
0, as shown in Figure 1a), we place a viewing cube,
shown in Figure 1b), at the center of Xe. Then, as in
the hemicube algorithm for radiosity, we render the
scene, including the clouds, onto the six faces of this
viewing cube. We used 64 by 64 resolution images
on each cube face, and then averaged the colors into
the 4 by 4 direction bins for each face, as shown in
Figure 1b), to give a total of 96 direction bins for the
six faces.

Xe X

F

E G

a) b)

E’

Figure 1. a) Light propagating from an empty cell
to a full cell. b) A viewing cube divided into bins.

Figure 1a) shows several rays in the direction ωi at
the center of direction bin i, crossing face F. Instead
of continuing to propagate and attenuate Iri(X,ωi) to
accumulate the values of Q0 and Q1 as described
above, we replace the propagating value by the
average color seen in direction bin -ωi, which is
indicated in bold lines in Figure 1b), in order to
include the inscattered light from the clouds. If F is
the only face across which Xe is adjacent to a full
cell, all directions ωi crossing F from Xe to X have
flow towards the left, so we need only render the
hemicube to the right of the bold line in Figure 1b).
Similarly, if Xe is adjacent to only two full voxels,
across faces F and G that share a common edge E,
then the needed incoming directions fill two
overlapping hemicubes, and we do not render the

two half faces adjacent to the dashed edge E’ shown
in Figure 1b).
The diffusion approximation assumes that the clouds
are dense, so that enough multiple scattering takes
place to make the radiance almost independent of
direction. As described above and in [Ish78], I1(X)
can be computed from I0(X) and its derivatives.
However the linear approximation (3) for I(X) is not
valid at the edges of the cloud, where single
scattering, and orders of multiple scattering too low
to insure directional independence, are important.
Therefore the approximation (3) cannot be used to
render an image of the cloud surface.
Instead, hierarchical volume rendering is used to
render the volume with opacities ρ(X)σt and voxel
colors I0(X). (The solution described above is done
for the red, green, and blue wavelength bands.) An
octree hierarchy of least squares approximations to
the color and opacity values on the various level
cubes is precomputed, together with the RMS error
of each approximation. Then, in a view dependent
manner which weights the error by the projected area
of the cube on the image, appropriate cubes are
selected, and composited in back to front order, using
the hardware cell-projection method. The details are
given in [Schu01]. For this application, the algorithm
in [Schu01] was modified to handle color, and to use
either piecewise linear or piecewise constant
functions in the approximation hierarchy.
The revised values for Q0 and Q1 obtained by
propagating the incident radiance from this volume
rendering are used again in obtaining a new solution
to the partial differential equation (4), and the
sequence of PDE solution, volume rendering, and ray
propagation is iterated until I0 stops changing
significantly. The illumination and shadowing of the
ground by the sky and clouds is also found using
hardware volume rendering onto hemicubes placed
on a ground sample grid, and the diffusely reflecting
ground is included as a background to the volume
rendered radiance images of the cloud. The sky
hemisphere, colored as described above, is also part
of the background. However the radiance of the sun
exceeds the dynamic range of the fixed-point frame
buffer, so the sun is not added to the sky background.
Instead, the direct sunlight, Isun(Xe,ωsun) is
propagated and attenuated separately, and saved as
Irisun(Xe,ωsun) at every voxel. Its effects are added
separately to Q0 and Q1.

4. FINAL GATHER
The final rendering is a “final gather” ray tracing of
the volume solution to equation (4). The reduced sun
flux Irisun(Xe,ωsun) is used, together with the exact
phase function p(ωsun, ωviewing) to give an exact final
single scattering of the attenuated sunlight, similar to

two pass volume rendering for shadow effects. This
can give the brightening effect on the edges of a
cloud when the sun is directly behind it. However, it
cannot account for the multiple directional scattering
of the sunlight, nor of the skylight, which contributes
to the darker and bluer color of the edges of the
cloud, when seen against other non-edge cloud
regions as a background.
To include a more accurate multiple directional
scattering effect for the regions near the edges of the
cloud, where the particle density is below a threshold
T necessary for the diffusion approximation to be
adequate, we again use volume rendering. When
doing the final gather ray tracing per pixel, we
determine low-density ray segments Sj where the ray
stays within the edge region where 0 < ρ(X) < T. For
each such segment, we integrate ρ(X)σt along the
segment to get the optical depth Dj, put a cube at the
“center” point cj where the integral reaches half this
value Dj, and compute the radiance on the faces of
the cube using volume rendering, as above. The x
axis of the cube is aligned with the direction of the
viewing ray, as shown in Figure 2.

A

B

C

D

E

F

G

H

I
J

K
L

Figure 2. Faces and subface of the viewing cube.

Knowing Dj, the Poisson distribution [Poi97] can tell
us the probability qij of scattering of scattering
exactly i times along this segment:

!

)exp(
i

DD
q

i
jj

ij
−

= . (8)

This is only an approximation, because the scattering
will change the direction of the ray. However, for
small water droplets inside clouds, the scattering is
highly peaked in the forward direction, so for the
first few orders of scattering, it is a good
approximation.
To get the phase function for the result of i scattering
events, we must convolve the phase function
p(ω,ω’) with itself i - 1 times, using integration over
the unit sphere. This is particularly simple for the
Henyey-Greenstein phase function, because the
result is the same formula, with g replaced by gi, as

can be proved by expanding p(ω,ω’) as a Legendra
series in cosθ. These multiple scattering phase
functions pi(ω,ω’) are precomputed, and saved for
each pixel on the faces of the viewing cube shown in
Figure 2. Then for each ray segment Sj, they are
multiplied pixelwise by the radiance images on the
cube and summed to give a convolution sample Kij.
Finally the Kij are multiplied by the probabilities qij
and summed over i to get the contribution Ej of the
segment Sj to the viewing ray through a pixel:

 ∑=
i

ijijj KqE . (9)

If the centers cjkl of a collection of segments Sjkl for a
region of pixels (k, l) form a continuous surface,
there is a possible speed-up. The higher order (large
i) scattering convolutions Kijkl of the radiance images
are blurred, and thus change slowly with the pixel
index (k, l). Therefore they can be interpolated from
a sparser sampling of the pixels in the region. Only
the probabilities qijkl needs to be computed at every
pixel. On the other hand, for smaller i, only the front
face of the cube containing the viewing direction
need be accurate, because the scattering is mainly
forward. For even smaller i, only a central section of
the front face is required. This saves rendering time
because the clipping to the view frustum is
performed while traversing the octree hierarchy, so
clipping eliminates large octree cells, and their
children are not even considered.
We used three different viewing cube sampling
patterns. The first is for the rear five faces of the
viewing cube in Figure 2: ABCD, AEFB, BFGC,
CGHD, and DHEA, which are sampled initially
along rays at every 8 output image pixels in x and y,
as indicated by the * symbols in Figure 3 below. This
figure shows the method of computing the
convolutions for these five faces, for the first low-
density segment, if any, along the viewing rays for
part of a low resolution image.

 2 1 2 - 4 1
 1 - 1 1 1 - - - 1 1 1
 1 2 - 2 - 2 - - - 2 1 2 - 2 -
 1 - - - - - - 1 - - 1 1 1 1 1 - - - -
4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 -
- - - - - - - - - - - - 1 - - - - - - - - -
- - - - - - - - - - - - 2 - - - - - 2 - 2 -
- - - - - - - - - - - - - - - - - - - 1 1 1
4 - - - * - - - - - - - * - - - 4 - 2 1
- - - - - - - - - - - - - - - - - - - 1
2 - 2 - - - - - - - - - - - - - - - 2 - 2
1 1 1 - - - 1 - - - - - - - - - - - - - -
 1 2 - - - - - - - - - - - - - 4 - - - 4
 1 - - - - 1 - - - - - - - - - - - - - -

 1 2 - - - - - - - - - - - - - - - - - - -
 1 -
 2 - * - - - - - - - * - - - - - - - * -

Figure 3. Convolution computation locations.
The convolutions Kijkl are bilinearly interpolated to
the positions indicated by the symbol “–” if the
values of the distances along the ray at which the
viewing cubes were placed are close enough. If not, a
new viewing cube is placed at the appropriate
distance along the ray, and new values of Kijkl are
calculated. These new calculations are done
hierarchically at the vertices of a quadtree, in order to
find values that may be satisfactory for interpolation
in one or more sub-squares. Thus a 4 in Figure 3
indicates a new viewing cube along a ray at an output
image pixel with x and y coordinates divisible by 4, a
2 indicates a new viewing cube along a ray at a pixel
with x and y coordinates divisible by 2, and a 1
indicates a new viewing cube for a pixel whose x or y
coordinate is an odd number. A blank indicates that
the viewing ray had no low-density segments.
The second sampling pattern was for the front face
EFGH of the viewing cube, which was initially
sampled every 4 pixels in x and y, with doubled
resolution, in order to give more accurate
interpolated convolutions near the peak of the
forward scattering phase function. The final pattern
uses only the center quarter IJKL of the front face of
the viewing cube, initially sampled every 2 pixels in
x and y. The total pixels were the same as on the
front face in the previous case, so the pixel spacing is
half the spacing on the whole front face, and a
quarter the spacing on the other five cube faces. This
central section is disregarded when computing the
convolution for the whole front face. Thus, every
direction is counted exactly once in the three
methods, and the convolutions which have been
interpolated or computed for each of them can be
added to get the total convolution for each low-
density ray segment.
The convolutions are computed hierarchically on 9
by 9 blocks of pixels, so that when interpolation is
allowed, the convolutions to be interpolated are
already known. The blocks are computed in
horizontal sweeps across the image, so that the left
hand column of pixels is known from the previous
block, and the top row of pixels is known from the
previous sweep of blocks. Thus the convolutions
need only be saved for the right hand column of the
previous block, and for one full image row,
representing the bottom row of the previous sweep’s
blocks. Once the convolutions are known for the
low-density segments, equations (8) and (9) are
evaluated per pixel, and the voxel segments on the
viewing ray are composited from front to back, using

either the low-density convolution solution
(appropriately weighted by the optical depth of the
voxel segment), the high-density diffusion solution,
or a density dependent interpolation of the two (in
order to eliminate aliasing artifacts from switching
solutions).

5. RESULTS
We used the final time step of a cloud simulation
produced by a hierarchical octree enhancement of the
simulation method of [Miy02], using the stable semi-
Lagrangian advection scheme of [Stam99] and the
vorticity confinement method described in [Fed01].
The simulation was at resolution 200 x 160 x 120,
and was averaged down to 100 x 80 x 60 cells for
rendering. A rectangular solid enclosing the cells
with non-zero droplet density had size 91 x 51 x 25.
Figure 4 shows a cloud with only single scattering of
the sun illumination. Since the phase function for the
droplets has p1 = g = 0.9, and the scattering is
strongly peaked in the forward direction, with little
scattering towards the viewpoint, the cloud is very
dark and has been artificially brightened. Figure 5
show the final gather of the diffusion approximation
solution with both sun and sky illumination, but no
correction for the low-density boundary regions, and
no propagation across the clear air. Figure 6 shows
the added effects of the volume rendering method of
accounting for the low-density regions at the edge of
the cloud, using only the initial sun, sky and ground
illumination in the diffusion solution. Figure 7 shows
the result of one iteration of the clear air propagation,
using volume rendering at the border voxels to image
the clouds. If one flips between Figures 6 and 7 in a
screen image viewer, one can see that some regions
of the cloud look brighter in Figure 7. An image
from two iterations of the clear air propagation is
indistinguishable from Figure 7.
Figure 7 took 21 minutes and 33 seconds to compute,
on a 1.7 GHz Pentium 4 with nVidia GeForce3
graphics. Of this time, 46 seconds was spent setting
up and solving the linear equations for diffusing the
incident sunlight, 2 seconds for setting up the octree
hierarchy, 227 seconds to render the 12460 viewing
cubes at the border cells around the clouds, at
resolution 64 by 64 per face, and the 32 by 32 array
of hemicubes on the ground sample grid, 94 seconds
to propagate the flux from the ground, sky, and cloud
in 96 directions though the cloud, another 46 seconds
to solve the revised linear equations taking into
account this extra flux, and 854 seconds to render the
image, including the time to render the viewing
cubes at the low-density segments, compute the
convolutions, interpolate and weight them, and ray
trace the 480 by 360 image.

6. DISCUSSION AND FUTURE WORK Figure 8, at a time near sunset, took 24 minutes and
45 seconds. The final rendering time took longer,
1034 seconds, because there were more cloud pixels
in this image, due to different viewing parameters.

The hardware rendering component of our work
suffered from the dynamic range limitations of the 8
bit fixed point format of our graphics hardware
pipeline. We hope to produce more accurate results
using floating-point graphics pipelines and frame
buffers. The computing time and memory sizes limit
the data resolution for our diffusion and light
propagation passes, but we hope to add extra
resolution to the final gather pass, by ray tracing the
original volume instead of the averaged version, and
interpolating the radiance solution. We also hope to
add a subvoxel-resolution Perlin noise texture and to
advect the texture coordinates using the velocity
from the weather simulation.

Figure 4. Single scattering only.

Figure 7. Diffusion solution with correction for
low-density regions, after one iteration of

propagation through clear air.

Figure 5. Initial diffusion solution.

Figure 8. Image at sunset.

The artifacts near the bottom of Figures 6 and 7
come from the transitions where two low-density
segments join into one. The probabilities qij for larger
numbers of scattering events are higher for the larger
optical depth of the single low-density segment, so
that more illumination is included from the sides, and

Figure 6. Initial diffusion solution with correction
for low-density regions.

less from the front. We should add some kind of
transition to alleviate the edges caused by this abrupt
switch. Currently for the volume rendering in the
final gather, all cells except the one containing the
viewpoint cj are rendered. We should also remove
any cell intersecting the low-density segment Sj, in
order to avoid double counting the scattering along
this segment.

7. ACKNOWLEDGMENTS
This work was performed under the auspices of the
U.S. Department of Energy a) by the University of
California, Lawrence Livermore National Laboratory
under contract number W-7405-ENG-48, and b) at
the University of California, Davis under
Memorandum Agreement No. DE-FC02-
01ER41202 through the SciDAC Program. We
thank the WSCG reviewers, Kwan-Liu Ma, and
Fabrice Neyret for suggestions that improved the
exposition, Fabrice Neyret for the conversations that
inspired this work, Jos Stam and Phil Collela for
advice, Jim Jones and Rob Falgout for help with
Hypre, Jos Stam for his multigrid code which we
used before switching to Hypre, and Robin Bing-Yu
Chen, Henry Johan, and Kenichi Amou for system
help at the University of Tokyo, where the first
author did much of this work as a visiting professor.

8. REFERENCES
[Bri00] Briggs, W., Henson, V. E., and Steve

McCormick, S., “A multigrid tutorial: Second
edition”, SIAM, Philadelphia, 2000.

[Dach03] Dachsbacher, C., and Stamminger, M.,
“Translucent shadow maps”, Eurographics
Symposium on Rendering 2003, pp. 197 – 201.

[Dob97] Dobashi, Y., Nishita T., Kaneda, K., and
Yamashita, H., “A fast display method of sky
color using basis functions”, The journal of
visualization and computer animation, Vol. 8
No. 2, pp 115 – 127, 1997.

[Fed01] Fedkiw, R., Stam, J., and Jensen, H. V.,
“Visual simulation of smoke”, Proceedings of
Siggraph ’01, pp. 15 – 22, 200.

[Ish78] Ishimaru, A., “Wave propagation and
scattering in random media. Volume 1: Single
scattering and transport theory”, Academic
Press, New York, 1978.

[Jen98] Jensen, H. W., and Christensen, P.,
“Efficient simulation of light transport in scenes
with participating media using photon maps”,
Proceedings of Siggraph 1998, pp. 311 – 329.

[Jen01] Jensen, H. W., Marchner, S., R., Levoy, M.,
and Hanrahan, P., “A practical model for
subsurface light transport”, Proceedings of
Siggraph 2001, pp. 511 – 518.

[Jen02] Jensen, H. W. and Buhler, J., “A rapid
hierarchical rendering technique for translucent
materials, ACM Transactions on Graphics Vol.
21 No. 3 pp. 576 – 581, 2002.

[Kaj84] Kajiya, J., and von Herzen, B., “Ray tracing
volume densities”, ACM Computer Graphics
(Proceedings of Siggraph 1984) Vol.18 No. 3,
pp. 165 – 174.

[Hyp03] http://www.llnl.gov/CASC/hypre
[Len02] Lensch, H., Goesele, M., Bekaert, Ph.,

Kautz, J., Magnor, M., Lang, J., and Seidel, H-
P., “Interactive rendering of translucent objects”,
Proceedings of Pacific Graphics 2002, pp. 214 –
224.

[Mer03] Mertens, T., Kautz, J., Bekaert, Ph., Seidel,
H-P., and Reeth, F. V., “Interactive rendering of
translucent deformable objects”, Eurographics
Symposium on Rendering 2003, pp. 130 – 140.

[Miy02] Miyazaki, R., Dobashi, Y., and Nishita, T.,
“Simulation of cumuliform clouds based on
computational fluid dynamics”, Proceedings of
Eurographics 2002 Short Presentations, pp. 405-
410, 2002.

[Nis96] Nishita T., Dobashi, Y., Kaneda, K., and
Yamashita, H., “Display method of sky color
taking into account multiple scattering”, Pacific
Graphics ’96, pp. 117 – 132, 1996.

[Per97] Perez, F., Pueyo, X., and Sillion, F., “Global
illumination techniques for the simulation of
participating media”, in “Rendering Techniques
’97”, Dorsey and Slusallek, editors, Springer,
Vienna, pp. 309 – 320, 1997.

[Poi97]http://info.bio.cmu.edu/Courses/03438/PBC9
7Poisson/PoissonPage.html

[Pre99] Preetham, A. J., Shirley, P., and Smits, B.,
“A practical analytic model for daylight”,
Proceedings of Siggraph 1999, pp. 91 – 100.

[Prem03] Premoze, S., Ashikmin, M., and Shirley,
P., “Path integration for light transport in
volumes”, Proceedings of the Eurographics
Symposium on Rendering, pp. 52 – 63, 2003.

[Schu01] Schussman, G., and Max, N., “Hierarchical
perspective volume rendering using triangle
fans”, Volume Graphics 2001, Stony Brook, NY,
pp. 195 – 200.

[Slo02] Sloup, J., “A survey of the modelling and
rendering of the earth’s atmosphere”, SCCG
2002, pp. 141 – 149, 2002 .

[Stam95] Stam, J., “Multiple scattering as a diffusion
process”, in “Rendering Techniques ’95”,
Hanrahan and Purgathofer, editors, pp. 41 – 50,
Springer, Vienna, 1995.

[Stam99] Stam, J., “Stable fluids”, Proceedings of
Siggraph ’99, pp. 121 – 128, 1999.

http://www.llnl.gov/CASC/hypre

